918/182 - 168/111 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: 918/182 - 168/111 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: 918/182
- Die Primfaktorzerlegung von Zähler und Nenner:
- 918 = 2 × 33 × 17
- 182 = 2 × 7 × 13
- Multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
- ggT (918; 182) = 2
918/182 = (918 : 2)/(182 : 2) = 459/91
Eine andere Methode zum Kürzen des Bruchs:
- Ohne Berechnung des ggT: Zerlegen Sie Zähler und Nenner in Primfaktoren und eliminieren Sie alle gemeinsamen.
918/182 = (2 × 33 × 17)/(2 × 7 × 13) = ((2 × 33 × 17) : 2)/((2 × 7 × 13) : 2) = 459/91
Der Bruch: - 168/111
- 168 = 23 × 3 × 7
- 111 = 3 × 37
- ggT (168; 111) = 3
- 168/111 = - (168 : 3)/(111 : 3) = - 56/37
- Wir hätten den Bruch kürzen können, ohne den GCF zu berechnen. Zerlegen Sie einfach Zähler und Nenner in Primfaktoren und eliminieren Sie die gemeinsamen.
- 168/111 = - (23 × 3 × 7)/(3 × 37) = - ((23 × 3 × 7) : 3)/((3 × 37) : 3) = - 56/37
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie die äquivalente vereinfachte Operation neu:
918/182 - 168/111 =
459/91 - 56/37
Wir schreiben die unechten Brüche um:
- Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Jeder unechte Bruch wird als ganze Zahl und als echter Bruch umgeschrieben, beide mit demselben Vorzeichen: Teile den Zähler durch den Nenner und notiere den Quotienten und den Rest der Division, wie unten gezeigt.
- Warum schreiben wir die unechten Brüche um?
- Indem der Wert des Zählers eines Bruchs verringert wird, werden die Berechnungen mit diesem Bruch einfacher durchzuführen.
Der Bruch: 459/91
459 : 91 = 5 und der Rest = 4 ⇒ 459 = 5 × 91 + 4
459/91 = (5 × 91 + 4)/91 = (5 × 91)/91 + 4/91 = 5 + 4/91
Der Bruch: - 56/37
- 56 : 37 = - 1 und der Rest = - 19 ⇒ - 56 = - 1 × 37 - 19
- 56/37 = ( - 1 × 37 - 19)/37 = ( - 1 × 37)/37 - 19/37 = - 1 - 19/37
Schreiben Sie die äquivalente vereinfachte Operation neu:
459/91 - 56/37 =
5 + 4/91 - 1 - 19/37 =
4 + 4/91 - 19/37
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
91 = 7 × 13
37 ist eine Primzahl
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (91; 37) = 7 × 13 × 37 = 3.367
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
4/91 ⟶ 3.367 : 91 = (7 × 13 × 37) : (7 × 13) = 37
- 19/37 ⟶ 3.367 : 37 = (7 × 13 × 37) : 37 = 91
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
4 + 4/91 - 19/37 =
4 + (37 × 4)/(37 × 91) - (91 × 19)/(91 × 37) =
4 + 148/3.367 - 1.729/3.367 =
4 + (148 - 1.729)/3.367 =
4 - 1.581/3.367
Kürze den Bruch auf seine Grunddarstellung:
- 1.581/3.367 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen:
- 1.581 = 3 × 17 × 31
- 3.367 = 7 × 13 × 37
- ggT (3 × 17 × 31; 7 × 13 × 37) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie das Zwischenergebnis um
Als positiven unechten Bruch:
(der Zähler >= der Nenner)
- Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
4 - 1.581/3.367 =
(4 × 3.367)/3.367 - 1.581/3.367 =
(4 × 3.367 - 1.581)/3.367 =
11.887/3.367
Als gemischte Zahl (auch gemischter Bruch genannt):
- Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Teilen Sie den Zähler durch den Nenner und notieren Sie den Quotienten und den Rest der Division, wie unten gezeigt:
11.887 : 3.367 = 3 und der Rest = 1.786 ⇒
11.887 = 3 × 3.367 + 1.786 ⇒
11.887/3.367 =
(3 × 3.367 + 1.786)/3.367 =
(3 × 3.367)/3.367 + 1.786/3.367 =
3 + 1.786/3.367 =
3 1.786/3.367
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
3 + 1.786/3.367 =
3 + 1.786 : 3.367 ≈
3,530442530443 ≈
3,53
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.