- 936/192 - 188/123 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: - 936/192 - 188/123 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: - 936/192
- Die Primfaktorzerlegung von Zähler und Nenner:
- 936 = 23 × 32 × 13
- 192 = 26 × 3
- Multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
- ggT (936; 192) = 23 × 3 = 24
- 936/192 = - (936 : 24)/(192 : 24) = - 39/8
Eine andere Methode zum Kürzen des Bruchs:
- Ohne Berechnung des ggT: Zerlegen Sie Zähler und Nenner in Primfaktoren und eliminieren Sie alle gemeinsamen.
- 936/192 = - (23 × 32 × 13)/(26 × 3) = - ((23 × 32 × 13) : (23 × 3))/((26 × 3) : (23 × 3)) = - 39/8
Der Bruch: - 188/123
- 188/123 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 188 = 22 × 47
- 123 = 3 × 41
- ggT (22 × 47; 3 × 41) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie die äquivalente vereinfachte Operation neu:
- 936/192 - 188/123 =
- 39/8 - 188/123
Wir schreiben die unechten Brüche um:
- Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Jeder unechte Bruch wird als ganze Zahl und als echter Bruch umgeschrieben, beide mit demselben Vorzeichen: Teile den Zähler durch den Nenner und notiere den Quotienten und den Rest der Division, wie unten gezeigt.
- Warum schreiben wir die unechten Brüche um?
- Indem der Wert des Zählers eines Bruchs verringert wird, werden die Berechnungen mit diesem Bruch einfacher durchzuführen.
Der Bruch: - 39/8
- 39 : 8 = - 4 und der Rest = - 7 ⇒ - 39 = - 4 × 8 - 7
- 39/8 = ( - 4 × 8 - 7)/8 = ( - 4 × 8)/8 - 7/8 = - 4 - 7/8
Der Bruch: - 188/123
- 188 : 123 = - 1 und der Rest = - 65 ⇒ - 188 = - 1 × 123 - 65
- 188/123 = ( - 1 × 123 - 65)/123 = ( - 1 × 123)/123 - 65/123 = - 1 - 65/123
Schreiben Sie die äquivalente vereinfachte Operation neu:
- 39/8 - 188/123 =
- 4 - 7/8 - 1 - 65/123 =
- 5 - 7/8 - 65/123
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
8 = 23
123 = 3 × 41
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (8; 123) = 23 × 3 × 41 = 984
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
- 7/8 ⟶ 984 : 8 = (23 × 3 × 41) : 23 = 123
- 65/123 ⟶ 984 : 123 = (23 × 3 × 41) : (3 × 41) = 8
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
- 5 - 7/8 - 65/123 =
- 5 - (123 × 7)/(123 × 8) - (8 × 65)/(8 × 123) =
- 5 - 861/984 - 520/984 =
- 5 + ( - 861 - 520)/984 =
- 5 - 1.381/984
Kürze den Bruch auf seine Grunddarstellung:
- 1.381/984 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen:
- 1.381 ist eine Primzahl
- 984 = 23 × 3 × 41
- ggT (1.381; 23 × 3 × 41) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie das Zwischenergebnis um
Als negativen unechten Bruch:
(der Zähler >= der Nenner)
- Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
- 5 - 1.381/984 =
( - 5 × 984)/984 - 1.381/984 =
( - 5 × 984 - 1.381)/984 =
- 6.301/984
Als gemischte Zahl (auch gemischter Bruch genannt):
- Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Teilen Sie den Zähler durch den Nenner und notieren Sie den Quotienten und den Rest der Division, wie unten gezeigt:
- 6.301 : 984 = - 6 und der Rest = - 397 ⇒
- 6.301 = - 6 × 984 - 397 ⇒
- 6.301/984 =
( - 6 × 984 - 397)/984 =
( - 6 × 984)/984 - 397/984 =
- 6 - 397/984 =
- 6 397/984
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
- 6 - 397/984 =
- 6 - 397 : 984 ≈
- 6,403455284553 ≈
- 6,4
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.