- 67/7.567 + 135/16 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: - 67/7.567 + 135/16 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: - 67/7.567
- 67/7.567 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 67 ist eine Primzahl
- 7.567 = 7 × 23 × 47
- ggT (67; 7 × 23 × 47) = 1
Der Bruch: 135/16
135/16 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 135 = 33 × 5
- 16 = 24
- ggT (33 × 5; 24) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Wir schreiben die unechten Brüche um:
- Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Jeder unechte Bruch wird als ganze Zahl und als echter Bruch umgeschrieben, beide mit demselben Vorzeichen: Teile den Zähler durch den Nenner und notiere den Quotienten und den Rest der Division, wie unten gezeigt.
- Warum schreiben wir die unechten Brüche um?
- Indem der Wert des Zählers eines Bruchs verringert wird, werden die Berechnungen mit diesem Bruch einfacher durchzuführen.
Der Bruch: 135/16
135 : 16 = 8 und der Rest = 7 ⇒ 135 = 8 × 16 + 7
135/16 = (8 × 16 + 7)/16 = (8 × 16)/16 + 7/16 = 8 + 7/16
Schreiben Sie die äquivalente vereinfachte Operation neu:
- 67/7.567 + 135/16 =
- 67/7.567 + 8 + 7/16 =
8 - 67/7.567 + 7/16
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
7.567 = 7 × 23 × 47
16 = 24
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (7.567; 16) = 24 × 7 × 23 × 47 = 121.072
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
- 67/7.567 ⟶ 121.072 : 7.567 = (24 × 7 × 23 × 47) : (7 × 23 × 47) = 16
7/16 ⟶ 121.072 : 16 = (24 × 7 × 23 × 47) : 24 = 7.567
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
8 - 67/7.567 + 7/16 =
8 - (16 × 67)/(16 × 7.567) + (7.567 × 7)/(7.567 × 16) =
8 - 1.072/121.072 + 52.969/121.072 =
8 + ( - 1.072 + 52.969)/121.072 =
8 + 51.897/121.072
Kürze den Bruch auf seine Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
51.897/121.072 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen:
- 51.897 = 3 × 17.299
- 121.072 = 24 × 7 × 23 × 47
- ggT (3 × 17.299; 24 × 7 × 23 × 47) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie das Zwischenergebnis um
Als gemischte Zahl (auch gemischter Bruch genannt):
- Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
8 + 51.897/121.072 = 8 51.897/121.072
Als positiven unechten Bruch:
(der Zähler >= der Nenner)
Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
8 + 51.897/121.072 =
(8 × 121.072)/121.072 + 51.897/121.072 =
(8 × 121.072 + 51.897)/121.072 =
1.020.473/121.072
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
8 + 51.897/121.072 =
8 + 51.897 : 121.072 ≈
8,428645764504 ≈
8,43
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.