- 29/47 + 32/57 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: - 29/47 + 32/57 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: - 29/47
- 29/47 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 29 ist eine Primzahl
- 47 ist eine Primzahl
- ggT (29; 47) = 1
Der Bruch: 32/57
32/57 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 32 = 25
- 57 = 3 × 19
- ggT (25; 3 × 19) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
47 ist eine Primzahl
57 = 3 × 19
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (47; 57) = 3 × 19 × 47 = 2.679
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
- 29/47 ⟶ 2.679 : 47 = (3 × 19 × 47) : 47 = 57
32/57 ⟶ 2.679 : 57 = (3 × 19 × 47) : (3 × 19) = 47
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
- 29/47 + 32/57 =
- (57 × 29)/(57 × 47) + (47 × 32)/(47 × 57) =
- 1.653/2.679 + 1.504/2.679 =
( - 1.653 + 1.504)/2.679 =
- 149/2.679
Kürze den Bruch auf seine Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
- 149/2.679 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen:
- 149 ist eine Primzahl
- 2.679 = 3 × 19 × 47
- ggT (149; 3 × 19 × 47) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreibe den Bruch um
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
- 149/2.679 =
- 149 : 2.679 ≈
- 0,055617767824 ≈
- 0,06
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.