- 29/47 + 32/57 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt

Subtraktion von Brüchen: - 29/47 + 32/57 = ?

Vereinfachen Sie die Operation

Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:

  • Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
  • * Warum versuchen wir die Brüche zu kürzen?
  • Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
  • Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.

* * *

Der Bruch: - 29/47

- 29/47 ist bereits auf seine Grunddarstellung gekürzt.


  • Zähler und Nenner haben keine gemeinsamen Primfaktoren.
  • Die Primfaktorzerlegung der Zahlen:
  • 29 ist eine Primzahl
  • 47 ist eine Primzahl
  • ggT (29; 47) = 1

Der Bruch: 32/57

32/57 ist bereits auf seine Grunddarstellung gekürzt.


  • Zähler und Nenner haben keine gemeinsamen Primfaktoren.
  • Die Primfaktorzerlegung der Zahlen:
  • 32 = 25
  • 57 = 3 × 19
  • ggT (25; 3 × 19) = 1


Führen Sie die Rechenoperation mit den Brüchen durch.

Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).

  • Um die Bruchoperation zu berechnen, müssen wir:
  • 1) ihren gemeinsamen Nenner finden (Hauptnenner)
  • 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
  • 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)

  • * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
  • Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.

1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:

Die Primfaktorzerlegung der Nenner:


47 ist eine Primzahl


57 = 3 × 19


Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).

kgV (47; 57) = 3 × 19 × 47 = 2.679



2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:

Teilen Sie das kgV durch den Nenner jedes Bruchs.


- 29/47 ⟶ 2.679 : 47 = (3 × 19 × 47) : 47 = 57


32/57 ⟶ 2.679 : 57 = (3 × 19 × 47) : (3 × 19) = 47


3) Brüche auf den Hauptnenner bringen:

  • Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
  • Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.

- 29/47 + 32/57 =


- (57 × 29)/(57 × 47) + (47 × 32)/(47 × 57) =


- 1.653/2.679 + 1.504/2.679 =


( - 1.653 + 1.504)/2.679 =


- 149/2.679


Kürze den Bruch auf seine Grunddarstellung:

  • Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
  • Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.

- 149/2.679 ist bereits auf seine Grunddarstellung gekürzt.

Zähler und Nenner haben keine gemeinsamen Primfaktoren.


  • Die Primfaktorzerlegung der Zahlen:
  • 149 ist eine Primzahl
  • 2.679 = 3 × 19 × 47
  • ggT (149; 3 × 19 × 47) = 1


Schreibe den Bruch um

Als Dezimalzahl:

Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:


- 149/2.679 =


- 149 : 2.679 ≈


- 0,055617767824 ≈


- 0,06

In Prozent:

  • Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
  • Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
  • Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.

- 0,055617767824 =


- 0,055617767824 × 100/100 =


( - 0,055617767824 × 100)/100 =


- 5,561776782381/100


- 5,561776782381% ≈


- 5,56%



Die endgültige Antwort:
:: auf drei Arten geschrieben ::

Als negativen echten Bruch:
(der Zähler < der Nenner)
- 29/47 + 32/57 = - 149/2.679

Als Dezimalzahl:
- 29/47 + 32/57 ≈ - 0,06

In Prozent:
- 29/47 + 32/57 ≈ - 5,56%

Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.

Weitere Operationen dieser Art:

Wie man die gewöhnlichen Brüche subtrahiert:
- 35/54 - 40/67

Subtrahieren Sie gewöhnliche Brüche, Online-Rechner:

Mehr zu gewöhnlichen Brüchen / Theorie: