- 12/25 - 27/43 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: - 12/25 - 27/43 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: - 12/25
- 12/25 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 12 = 22 × 3
- 25 = 52
- ggT (22 × 3; 52) = 1
Der Bruch: - 27/43
- 27/43 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 27 = 33
- 43 ist eine Primzahl
- ggT (33; 43) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
25 = 52
43 ist eine Primzahl
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (25; 43) = 52 × 43 = 1.075
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
- 12/25 ⟶ 1.075 : 25 = (52 × 43) : 52 = 43
- 27/43 ⟶ 1.075 : 43 = (52 × 43) : 43 = 25
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
- 12/25 - 27/43 =
- (43 × 12)/(43 × 25) - (25 × 27)/(25 × 43) =
- 516/1.075 - 675/1.075 =
( - 516 - 675)/1.075 =
- 1.191/1.075
Kürze den Bruch auf seine Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
- 1.191/1.075 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen:
- 1.191 = 3 × 397
- 1.075 = 52 × 43
- ggT (3 × 397; 52 × 43) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreibe den Bruch um
Als gemischte Zahl (auch gemischter Bruch genannt):
- Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Teilen Sie den Zähler durch den Nenner und notieren Sie den Quotienten und den Rest der Division, wie unten gezeigt:
- 1.191 : 1.075 = - 1 und der Rest = - 116 ⇒
- 1.191 = - 1 × 1.075 - 116 ⇒
- 1.191/1.075 =
( - 1 × 1.075 - 116)/1.075 =
( - 1 × 1.075)/1.075 - 116/1.075 =
- 1 - 116/1.075 =
- 1 116/1.075
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
- 1 - 116/1.075 =
- 1 - 116 : 1.075 ≈
- 1,107906976744 ≈
- 1,11
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.