- 1.082/15 + 88/43 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: - 1.082/15 + 88/43 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: - 1.082/15
- 1.082/15 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 1.082 = 2 × 541
- 15 = 3 × 5
- ggT (2 × 541; 3 × 5) = 1
Der Bruch: 88/43
88/43 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 88 = 23 × 11
- 43 ist eine Primzahl
- ggT (23 × 11; 43) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Wir schreiben die unechten Brüche um:
- Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Jeder unechte Bruch wird als ganze Zahl und als echter Bruch umgeschrieben, beide mit demselben Vorzeichen: Teile den Zähler durch den Nenner und notiere den Quotienten und den Rest der Division, wie unten gezeigt.
- Warum schreiben wir die unechten Brüche um?
- Indem der Wert des Zählers eines Bruchs verringert wird, werden die Berechnungen mit diesem Bruch einfacher durchzuführen.
Der Bruch: - 1.082/15
- 1.082 : 15 = - 72 und der Rest = - 2 ⇒ - 1.082 = - 72 × 15 - 2
- 1.082/15 = ( - 72 × 15 - 2)/15 = ( - 72 × 15)/15 - 2/15 = - 72 - 2/15
Der Bruch: 88/43
88 : 43 = 2 und der Rest = 2 ⇒ 88 = 2 × 43 + 2
88/43 = (2 × 43 + 2)/43 = (2 × 43)/43 + 2/43 = 2 + 2/43
Schreiben Sie die äquivalente vereinfachte Operation neu:
- 1.082/15 + 88/43 =
- 72 - 2/15 + 2 + 2/43 =
- 70 - 2/15 + 2/43
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
15 = 3 × 5
43 ist eine Primzahl
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (15; 43) = 3 × 5 × 43 = 645
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
- 2/15 ⟶ 645 : 15 = (3 × 5 × 43) : (3 × 5) = 43
2/43 ⟶ 645 : 43 = (3 × 5 × 43) : 43 = 15
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
- 70 - 2/15 + 2/43 =
- 70 - (43 × 2)/(43 × 15) + (15 × 2)/(15 × 43) =
- 70 - 86/645 + 30/645 =
- 70 + ( - 86 + 30)/645 =
- 70 - 56/645
Kürze den Bruch auf seine Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
- 56/645 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen:
- 56 = 23 × 7
- 645 = 3 × 5 × 43
- ggT (23 × 7; 3 × 5 × 43) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie das Zwischenergebnis um
Als gemischte Zahl (auch gemischter Bruch genannt):
- Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- 70 - 56/645 = - 70 56/645
Als negativen unechten Bruch:
(der Zähler >= der Nenner)
Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
- 70 - 56/645 =
( - 70 × 645)/645 - 56/645 =
( - 70 × 645 - 56)/645 =
- 45.206/645
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
- 70 - 56/645 =
- 70 - 56 : 645 ≈
- 70,086821705426 ≈
- 70,09
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.