- 86/141 - 57/111 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: - 86/141 - 57/111 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: - 86/141
- 86/141 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 86 = 2 × 43
- 141 = 3 × 47
- ggT (2 × 43; 3 × 47) = 1
Der Bruch: - 57/111
- Die Primfaktorzerlegung von Zähler und Nenner:
- 57 = 3 × 19
- 111 = 3 × 37
- Multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
- ggT (57; 111) = 3
- 57/111 = - (57 : 3)/(111 : 3) = - 19/37
Eine andere Methode zum Kürzen des Bruchs:
- Ohne Berechnung des ggT: Zerlegen Sie Zähler und Nenner in Primfaktoren und eliminieren Sie alle gemeinsamen.
- 57/111 = - (3 × 19)/(3 × 37) = - ((3 × 19) : 3)/((3 × 37) : 3) = - 19/37
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie die äquivalente vereinfachte Operation neu:
- 86/141 - 57/111 =
- 86/141 - 19/37
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
141 = 3 × 47
37 ist eine Primzahl
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (141; 37) = 3 × 37 × 47 = 5.217
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
- 86/141 ⟶ 5.217 : 141 = (3 × 37 × 47) : (3 × 47) = 37
- 19/37 ⟶ 5.217 : 37 = (3 × 37 × 47) : 37 = 141
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
- 86/141 - 19/37 =
- (37 × 86)/(37 × 141) - (141 × 19)/(141 × 37) =
- 3.182/5.217 - 2.679/5.217 =
( - 3.182 - 2.679)/5.217 =
- 5.861/5.217
Kürze den Bruch auf seine Grunddarstellung:
- 5.861/5.217 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen:
- 5.861 ist eine Primzahl
- 5.217 = 3 × 37 × 47
- ggT (5.861; 3 × 37 × 47) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreibe den Bruch um
Als gemischte Zahl (auch gemischter Bruch genannt):
- Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Teilen Sie den Zähler durch den Nenner und notieren Sie den Quotienten und den Rest der Division, wie unten gezeigt:
- 5.861 : 5.217 = - 1 und der Rest = - 644 ⇒
- 5.861 = - 1 × 5.217 - 644 ⇒
- 5.861/5.217 =
( - 1 × 5.217 - 644)/5.217 =
( - 1 × 5.217)/5.217 - 644/5.217 =
- 1 - 644/5.217 =
- 1 644/5.217
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
- 1 - 644/5.217 =
- 1 - 644 : 5.217 ≈
- 1,123442591528 ≈
- 1,12
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.
- 1,123442591528 =
- 1,123442591528 × 100/100 =
( - 1,123442591528 × 100)/100 =
- 112,34425915277/100 ≈
- 112,34425915277% ≈
- 112,34%
Externer Link » Integer- und Dezimalzahlen, Brüche, Verhältnisse und Proportionen in Prozent umrechnen und schreiben, Online-Rechner
Die endgültige Antwort:
:: auf vier Arten geschrieben ::
Als negativen unechten Bruch:
(der Zähler >= der Nenner)
- 86/141 - 57/111 = - 5.861/5.217
Als gemischte Zahl (auch gemischter Bruch genannt):
- 86/141 - 57/111 = - 1 644/5.217
Als Dezimalzahl:
- 86/141 - 57/111 ≈ - 1,12
In Prozent:
- 86/141 - 57/111 ≈ - 112,34%
Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.