- 631/7.131 - 969/640 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt

Subtraktion von Brüchen: - 631/7.131 - 969/640 = ?

Vereinfachen Sie die Operation

Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:

  • Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
  • * Warum versuchen wir die Brüche zu kürzen?
  • Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
  • Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.

* * *

Der Bruch: - 631/7.131

- 631/7.131 ist bereits auf seine Grunddarstellung gekürzt.


  • Zähler und Nenner haben keine gemeinsamen Primfaktoren.
  • Die Primfaktorzerlegung der Zahlen:
  • 631 ist eine Primzahl
  • 7.131 = 3 × 2.377
  • ggT (631; 3 × 2.377) = 1

Der Bruch: - 969/640

- 969/640 ist bereits auf seine Grunddarstellung gekürzt.


  • Zähler und Nenner haben keine gemeinsamen Primfaktoren.
  • Die Primfaktorzerlegung der Zahlen:
  • 969 = 3 × 17 × 19
  • 640 = 27 × 5
  • ggT (3 × 17 × 19; 27 × 5) = 1


Wir schreiben die unechten Brüche um:

  • Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
  • Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
  • Jeder unechte Bruch wird als ganze Zahl und als echter Bruch umgeschrieben, beide mit demselben Vorzeichen: Teile den Zähler durch den Nenner und notiere den Quotienten und den Rest der Division, wie unten gezeigt.
  • Warum schreiben wir die unechten Brüche um?
  • Indem der Wert des Zählers eines Bruchs verringert wird, werden die Berechnungen mit diesem Bruch einfacher durchzuführen.
* * *

Der Bruch: - 969/640


- 969 : 640 = - 1 und der Rest = - 329 ⇒ - 969 = - 1 × 640 - 329


- 969/640 = ( - 1 × 640 - 329)/640 = ( - 1 × 640)/640 - 329/640 = - 1 - 329/640



Schreiben Sie die äquivalente vereinfachte Operation neu:

- 631/7.131 - 969/640 =


- 631/7.131 - 1 - 329/640 =


- 1 - 631/7.131 - 329/640

Führen Sie die Rechenoperation mit den Brüchen durch.

Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).

  • Um die Bruchoperation zu berechnen, müssen wir:
  • 1) ihren gemeinsamen Nenner finden (Hauptnenner)
  • 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
  • 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)

  • * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
  • Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.

1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:

Die Primfaktorzerlegung der Nenner:


7.131 = 3 × 2.377


640 = 27 × 5


Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).

kgV (7.131; 640) = 27 × 3 × 5 × 2.377 = 4.563.840



2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:

Teilen Sie das kgV durch den Nenner jedes Bruchs.


- 631/7.131 ⟶ 4.563.840 : 7.131 = (27 × 3 × 5 × 2.377) : (3 × 2.377) = 640


- 329/640 ⟶ 4.563.840 : 640 = (27 × 3 × 5 × 2.377) : (27 × 5) = 7.131


3) Brüche auf den Hauptnenner bringen:

  • Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
  • Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.

- 1 - 631/7.131 - 329/640 =


- 1 - (640 × 631)/(640 × 7.131) - (7.131 × 329)/(7.131 × 640) =


- 1 - 403.840/4.563.840 - 2.346.099/4.563.840 =


- 1 + ( - 403.840 - 2.346.099)/4.563.840 =


- 1 - 2.749.939/4.563.840


Kürze den Bruch auf seine Grunddarstellung:

  • Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
  • Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.

- 2.749.939/4.563.840 ist bereits auf seine Grunddarstellung gekürzt.

Zähler und Nenner haben keine gemeinsamen Primfaktoren.


  • Die Primfaktorzerlegung der Zahlen:
  • 2.749.939 = 479 × 5.741
  • 4.563.840 = 27 × 3 × 5 × 2.377
  • ggT (479 × 5.741; 27 × 3 × 5 × 2.377) = 1


Schreiben Sie das Zwischenergebnis um

Als gemischte Zahl (auch gemischter Bruch genannt):

  • Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
  • Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.

- 1 - 2.749.939/4.563.840 = - 1 2.749.939/4.563.840

Als negativen unechten Bruch:
(der Zähler >= der Nenner)

Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.


- 1 - 2.749.939/4.563.840 =


( - 1 × 4.563.840)/4.563.840 - 2.749.939/4.563.840 =


( - 1 × 4.563.840 - 2.749.939)/4.563.840 =


- 7.313.779/4.563.840

Als Dezimalzahl:

Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:


- 1 - 2.749.939/4.563.840 =


- 1 - 2.749.939 : 4.563.840 ≈


- 1,602549388234 ≈


- 1,6

In Prozent:

  • Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
  • Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
  • Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.

- 1,602549388234 =


- 1,602549388234 × 100/100 =


( - 1,602549388234 × 100)/100 =


- 160,254938823447/100


- 160,254938823447% ≈


- 160,25%



Die endgültige Antwort:
:: auf vier Arten geschrieben ::

Als gemischte Zahl (auch gemischter Bruch genannt):
- 631/7.131 - 969/640 = - 1 2.749.939/4.563.840

Als negativen unechten Bruch:
(der Zähler >= der Nenner)
- 631/7.131 - 969/640 = - 7.313.779/4.563.840

Als Dezimalzahl:
- 631/7.131 - 969/640 ≈ - 1,6

In Prozent:
- 631/7.131 - 969/640 ≈ - 160,25%

Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.

Weitere Operationen dieser Art:

Wie man die gewöhnlichen Brüche addiert:
639/7.143 + 978/643

Addieren Sie gewöhnliche Brüche, Online-Rechner:

Mehr zu gewöhnlichen Brüchen / Theorie: