- 59/4.364 + 79/25 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: - 59/4.364 + 79/25 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: - 59/4.364
- 59/4.364 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 59 ist eine Primzahl
- 4.364 = 22 × 1.091
- ggT (59; 22 × 1.091) = 1
Der Bruch: 79/25
79/25 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 79 ist eine Primzahl
- 25 = 52
- ggT (79; 52) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Wir schreiben die unechten Brüche um:
- Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Jeder unechte Bruch wird als ganze Zahl und als echter Bruch umgeschrieben, beide mit demselben Vorzeichen: Teile den Zähler durch den Nenner und notiere den Quotienten und den Rest der Division, wie unten gezeigt.
- Warum schreiben wir die unechten Brüche um?
- Indem der Wert des Zählers eines Bruchs verringert wird, werden die Berechnungen mit diesem Bruch einfacher durchzuführen.
Der Bruch: 79/25
79 : 25 = 3 und der Rest = 4 ⇒ 79 = 3 × 25 + 4
79/25 = (3 × 25 + 4)/25 = (3 × 25)/25 + 4/25 = 3 + 4/25
Schreiben Sie die äquivalente vereinfachte Operation neu:
- 59/4.364 + 79/25 =
- 59/4.364 + 3 + 4/25 =
3 - 59/4.364 + 4/25
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
4.364 = 22 × 1.091
25 = 52
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (4.364; 25) = 22 × 52 × 1.091 = 109.100
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
- 59/4.364 ⟶ 109.100 : 4.364 = (22 × 52 × 1.091) : (22 × 1.091) = 25
4/25 ⟶ 109.100 : 25 = (22 × 52 × 1.091) : 52 = 4.364
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
3 - 59/4.364 + 4/25 =
3 - (25 × 59)/(25 × 4.364) + (4.364 × 4)/(4.364 × 25) =
3 - 1.475/109.100 + 17.456/109.100 =
3 + ( - 1.475 + 17.456)/109.100 =
3 + 15.981/109.100
Kürze den Bruch auf seine Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
15.981/109.100 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen:
- 15.981 = 3 × 7 × 761
- 109.100 = 22 × 52 × 1.091
- ggT (3 × 7 × 761; 22 × 52 × 1.091) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie das Zwischenergebnis um
Als gemischte Zahl (auch gemischter Bruch genannt):
- Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
3 + 15.981/109.100 = 3 15.981/109.100
Als positiven unechten Bruch:
(der Zähler >= der Nenner)
Ein unechter Bruch: Der Wert des Zählers ist größer oder gleich dem Wert des Nenners.
3 + 15.981/109.100 =
(3 × 109.100)/109.100 + 15.981/109.100 =
(3 × 109.100 + 15.981)/109.100 =
343.281/109.100
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
3 + 15.981/109.100 =
3 + 15.981 : 109.100 ≈
3,146480293309 ≈
3,15
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.