- 17/45 + 29/73 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt

Subtraktion von Brüchen: - 17/45 + 29/73 = ?

Vereinfachen Sie die Operation

Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:

  • Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
  • * Warum versuchen wir die Brüche zu kürzen?
  • Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
  • Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.

* * *

Der Bruch: - 17/45

- 17/45 ist bereits auf seine Grunddarstellung gekürzt.


  • Zähler und Nenner haben keine gemeinsamen Primfaktoren.
  • Die Primfaktorzerlegung der Zahlen:
  • 17 ist eine Primzahl
  • 45 = 32 × 5
  • ggT (17; 32 × 5) = 1

Der Bruch: 29/73

29/73 ist bereits auf seine Grunddarstellung gekürzt.


  • Zähler und Nenner haben keine gemeinsamen Primfaktoren.
  • Die Primfaktorzerlegung der Zahlen:
  • 29 ist eine Primzahl
  • 73 ist eine Primzahl
  • ggT (29; 73) = 1


Führen Sie die Rechenoperation mit den Brüchen durch.

Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).

  • Um die Bruchoperation zu berechnen, müssen wir:
  • 1) ihren gemeinsamen Nenner finden (Hauptnenner)
  • 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
  • 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)

  • * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
  • Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.

1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:

Die Primfaktorzerlegung der Nenner:


45 = 32 × 5


73 ist eine Primzahl


Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).

kgV (45; 73) = 32 × 5 × 73 = 3.285



2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:

Teilen Sie das kgV durch den Nenner jedes Bruchs.


- 17/45 ⟶ 3.285 : 45 = (32 × 5 × 73) : (32 × 5) = 73


29/73 ⟶ 3.285 : 73 = (32 × 5 × 73) : 73 = 45


3) Brüche auf den Hauptnenner bringen:

  • Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
  • Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.

- 17/45 + 29/73 =


- (73 × 17)/(73 × 45) + (45 × 29)/(45 × 73) =


- 1.241/3.285 + 1.305/3.285 =


( - 1.241 + 1.305)/3.285 =


64/3.285


Kürze den Bruch auf seine Grunddarstellung:

  • Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
  • Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.

64/3.285 ist bereits auf seine Grunddarstellung gekürzt.

Zähler und Nenner haben keine gemeinsamen Primfaktoren.


  • Die Primfaktorzerlegung der Zahlen:
  • 64 = 26
  • 3.285 = 32 × 5 × 73
  • ggT (26; 32 × 5 × 73) = 1


Schreibe den Bruch um

Als Dezimalzahl:

Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:


64/3.285 =


64 : 3.285 ≈


0,019482496195 ≈


0,02

In Prozent:

  • Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
  • Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
  • Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.

0,019482496195 =


0,019482496195 × 100/100 =


(0,019482496195 × 100)/100 =


1,948249619482/100


1,948249619482% ≈


1,95%



Die endgültige Antwort:
:: auf drei Arten geschrieben ::

Als positiven echten Bruch:
(der Zähler < der Nenner)
- 17/45 + 29/73 = 64/3.285

Als Dezimalzahl:
- 17/45 + 29/73 ≈ 0,02

In Prozent:
- 17/45 + 29/73 ≈ 1,95%

Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.

Weitere Operationen dieser Art:

Wie man die gewöhnlichen Brüche subtrahiert:
20/57 - 32/82

Subtrahieren Sie gewöhnliche Brüche, Online-Rechner:

Mehr zu gewöhnlichen Brüchen / Theorie: