- 50/96 - 67/94 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: - 50/96 - 67/94 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: - 50/96
- Die Primfaktorzerlegung von Zähler und Nenner:
- 50 = 2 × 52
- 96 = 25 × 3
- Multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
- ggT (50; 96) = 2
- 50/96 = - (50 : 2)/(96 : 2) = - 25/48
Eine andere Methode zum Kürzen des Bruchs:
- Ohne Berechnung des ggT: Zerlegen Sie Zähler und Nenner in Primfaktoren und eliminieren Sie alle gemeinsamen.
- 50/96 = - (2 × 52)/(25 × 3) = - ((2 × 52) : 2)/((25 × 3) : 2) = - 25/48
Der Bruch: - 67/94
- 67/94 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 67 ist eine Primzahl
- 94 = 2 × 47
- ggT (67; 2 × 47) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie die äquivalente vereinfachte Operation neu:
- 50/96 - 67/94 =
- 25/48 - 67/94
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
48 = 24 × 3
94 = 2 × 47
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (48; 94) = 24 × 3 × 47 = 2.256
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
- 25/48 ⟶ 2.256 : 48 = (24 × 3 × 47) : (24 × 3) = 47
- 67/94 ⟶ 2.256 : 94 = (24 × 3 × 47) : (2 × 47) = 24
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
- 25/48 - 67/94 =
- (47 × 25)/(47 × 48) - (24 × 67)/(24 × 94) =
- 1.175/2.256 - 1.608/2.256 =
( - 1.175 - 1.608)/2.256 =
- 2.783/2.256
Kürze den Bruch auf seine Grunddarstellung:
- 2.783/2.256 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen:
- 2.783 = 112 × 23
- 2.256 = 24 × 3 × 47
- ggT (112 × 23; 24 × 3 × 47) = 1
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreibe den Bruch um
Als gemischte Zahl (auch gemischter Bruch genannt):
- Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
- Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
- Teilen Sie den Zähler durch den Nenner und notieren Sie den Quotienten und den Rest der Division, wie unten gezeigt:
- 2.783 : 2.256 = - 1 und der Rest = - 527 ⇒
- 2.783 = - 1 × 2.256 - 527 ⇒
- 2.783/2.256 =
( - 1 × 2.256 - 527)/2.256 =
( - 1 × 2.256)/2.256 - 527/2.256 =
- 1 - 527/2.256 =
- 1 527/2.256
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
- 1 - 527/2.256 =
- 1 - 527 : 2.256 ≈
- 1,23359929078 ≈
- 1,23
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.
- 1,23359929078 =
- 1,23359929078 × 100/100 =
( - 1,23359929078 × 100)/100 =
- 123,359929078014/100 ≈
- 123,359929078014% ≈
- 123,36%
Externer Link » Integer- und Dezimalzahlen, Brüche, Verhältnisse und Proportionen in Prozent umrechnen und schreiben, Online-Rechner
Die endgültige Antwort:
:: auf vier Arten geschrieben ::
Als negativen unechten Bruch:
(der Zähler >= der Nenner)
- 50/96 - 67/94 = - 2.783/2.256
Als gemischte Zahl (auch gemischter Bruch genannt):
- 50/96 - 67/94 = - 1 527/2.256
Als Dezimalzahl:
- 50/96 - 67/94 ≈ - 1,23
In Prozent:
- 50/96 - 67/94 ≈ - 123,36%
Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.