- 37/120 - 26/65 = ? Subtrahieren gewöhnlicher Brüche, Online-Rechner. Subtraktionsoperation Schritt für Schritt erklärt
Subtraktion von Brüchen: - 37/120 - 26/65 = ?
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Um einen Bruch auf seine Grunddarstellung zu kürzen: dividieren Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- * Warum versuchen wir die Brüche zu kürzen?
- Durch Verringern der Werte der Zähler und Nenner der Brüche sind die Berechnungen einfacher durchzuführen.
- Ein auf seine Grunddarstellung gekürzter Bruch hat den kleinstmöglichen Zähler und Nenner und kann nicht mehr gekürzt werden.
* * *
Der Bruch: - 37/120
- 37/120 ist bereits auf seine Grunddarstellung gekürzt.
- Zähler und Nenner haben keine gemeinsamen Primfaktoren.
- Die Primfaktorzerlegung der Zahlen: 37 ist eine Primzahl
- 120 = 23 × 3 × 5
- ggT (37; 23 × 3 × 5) = 1
Der Bruch: - 26/65
- Die Primfaktorzerlegung von Zähler und Nenner:
- 26 = 2 × 13
- 65 = 5 × 13
- Multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
- ggT (26; 65) = 13
- 26/65 = - (26 : 13)/(65 : 13) = - 2/5
Eine andere Methode zum Kürzen des Bruchs:
- Ohne Berechnung des ggT: Zerlegen Sie Zähler und Nenner in Primfaktoren und eliminieren Sie alle gemeinsamen.
- 26/65 = - (2 × 13)/(5 × 13) = - ((2 × 13) : 13)/((5 × 13) : 13) = - 2/5
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie die äquivalente vereinfachte Operation neu:
- 37/120 - 26/65 =
- 37/120 - 2/5
Führen Sie die Rechenoperation mit den Brüchen durch.
Um Brüche zu addieren oder zu subtrahieren, müssen sie gleiche Nenner haben (derselbe gemeinsame Nenner, Hauptnenner genannt).
- Um die Bruchoperation zu berechnen, müssen wir:
- 1) ihren gemeinsamen Nenner finden (Hauptnenner)
- 2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
- 3) Bringen Sie sie dann auf den Hauptnenner, indem Sie die Brüche auf ihre äquivalenten Formen erweitern, die alle gleiche Nenner haben (derselbe Hauptnenner)
- * Der Hauptnenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgM) der Nenner der Brüche.
- Das kgV wird der Hauptnenner der Brüche sein, mit denen wir arbeiten.
1) Finde den gemeinsamen Nenner
Berechnen Sie das kgV der Nenner:
Die Primfaktorzerlegung der Nenner:
120 = 23 × 3 × 5
5 ist eine Primzahl
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
kgV (120; 5) = 23 × 3 × 5 = 120
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
- 37/120 ⟶ 120 : 120 = 1
- 2/5 ⟶ 120 : 5 = (23 × 3 × 5) : 5 = 24
3) Brüche auf den Hauptnenner bringen:
- Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde. Auf diese Weise haben alle Brüche gleiche Nenner (das ist der Hauptnenner).
- Behalten Sie dann den gemeinsamen Nenner bei und arbeiten Sie nur mit den Zählern der Brüche.
- 37/120 - 2/5 =
- (1 × 37)/(1 × 120) - (24 × 2)/(24 × 5) =
- 37/120 - 48/120 =
( - 37 - 48)/120 =
- 85/120
Kürze den Bruch auf seine Grunddarstellung:
Berechnen Sie den größten gemeinsamen Teiler, ggT,
des Zählers und des Nenners des Bruchs:
- Die Primfaktorzerlegung von Zähler und Nenner:
- 85 = 5 × 17
- 120 = 23 × 3 × 5
Multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
ggT (85; 120) = ggT (5 × 17; 23 × 3 × 5) = 5
Der Bruch kann verkürzt werden:
Teilen Sie sowohl den Zähler als auch den Nenner durch ihren größten gemeinsamen Teiler, ggT.
- 85/120 =
- (85 : 5)/(120 : 120) =
- 17/24
Wir hätten den Bruch kürzen können, ohne den GCF zu berechnen. Zerlegen Sie einfach Zähler und Nenner in Primfaktoren und eliminieren Sie die gemeinsamen.
- 85/120 =
- (5 × 17)/(23 × 3 × 5) =
- ((5 × 17) : 5)/((23 × 3 × 5) : 5) =
- 17/(23 × 3) =
- 17/24
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Schreiben Sie die äquivalente vereinfachte Operation neu:
- 85/120 =
- 17/24
Schreibe den Bruch um
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
- 17/24 =
- 17 : 24 ≈
- 0,708333333333 ≈
- 0,71
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.
- 0,708333333333 =
- 0,708333333333 × 100/100 =
( - 0,708333333333 × 100)/100 =
- 70,833333333333/100 ≈
- 70,833333333333% ≈
- 70,83%
Externer Link » Integer- und Dezimalzahlen, Brüche, Verhältnisse und Proportionen in Prozent umrechnen und schreiben, Online-Rechner
Die endgültige Antwort:
:: auf drei Arten geschrieben ::
Als negativen echten Bruch:
(der Zähler < der Nenner)
- 37/120 - 26/65 = - 17/24
Als Dezimalzahl:
- 37/120 - 26/65 ≈ - 0,71
In Prozent:
- 37/120 - 26/65 ≈ - 70,83%
Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.