Vergleiche und sortiere in aufsteigender Reihenfolge die beiden gewöhnlichen Brüche, welcher größer ist: 45/23 und 53/27. Gewöhnliche Brüche verglichen und in aufsteigender Reihenfolge sortiert, Ergebnis unten erklärt
Vergleichen Sie sie: 45/23 und 53/27
Um mehrere Brüche zu vergleichen und zu sortieren, sollten sie entweder denselben Nenner oder denselben Zähler haben.
Die Vergleichsoperation von Brüchen: 45/23 und 53/27
Vereinfachen Sie die Operation Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
45/23 ist bereits auf seine Grunddarstellung gekürzt. Zähler und Nenner haben keine gemeinsamen Primfaktoren: 45 = 32 × 5 23 ist eine Primzahl.
53/27 ist bereits auf seine Grunddarstellung gekürzt. Zähler und Nenner haben keine gemeinsamen Primfaktoren: 53 ist eine Primzahl. 27 = 33
Um die Brüche zu vergleichen und zu sortieren, bringe sie auf denselben Nenner.
Um die Brüche auf denselben Nenner zu bringen, müssen wir:
1) Berechnen Sie diesen gemeinsamen Nenner
2) Berechnen Sie dann die Erweiterungszahl jedes Bruchs
3) Bringen Sie dann die Brüche auf denselben Nenner, indem Sie die Brüche auf äquivalente Formen erweitern, die alle denselben Nenner haben
Berechne den gemeinsamen Nenner
Der gemeinsame Nenner ist nichts anderes als das kleinste gemeinsame Vielfache (kgV) der Nenner der Brüche.
Das kgV wird der gemeinsame Nenner der verglichenen Brüche sein.
Um das kgV zu berechnen, benötigen wir die Primfaktorzerlegung der Nenner:
23 ist eine Primzahl.
27 = 33
Multiplizieren Sie alle eindeutigen Primfaktoren: Wenn es sich wiederholende Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem höchsten Exponenten (den höchsten Potenzen).
Berechnen Sie dann die Erweiterungszahl jedes Bruchs:
Teilen Sie das kgV durch den Nenner jedes Bruchs.
45/23 : 621 : 23 = (33 × 23) : 23 = 27
53/27 : 621 : 27 = (33 × 23) : 33 = 23
Bringe die Brüche auf denselben Nenner (Hauptnenner):
Erweitern Sie jeden Bruch: Multiplizieren Sie sowohl seinen Zähler als auch seinen Nenner mit der entsprechenden Erweiterungszahl, die in Schritt 2 oben berechnet wurde.
Auf diese Weise haben alle Brüche denselben Nenner (das ist der Hauptnenner):
45/23 = (27 × 45)/(27 × 23) = 1.215/621
53/27 = (23 × 53)/(23 × 27) = 1.219/621
Die Brüche haben denselben Nenner, vergleichen Sie ihre Zähler.
Je größer der Zähler, desto größer der positive Bruch.
Je größer der Zähler, desto kleiner der negative Bruch.
::: Die Vergleichsoperation von Brüchen ::: Die endgültige Antwort:
Die Brüche in aufsteigender Reihenfolge sortiert: 1.215/621 < 1.219/621
Die Anfangsbrüche in aufsteigender Reihenfolge sortiert: 45/23 < 53/27
Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.