45/11 × 1/54 = ? Multiplizieren Sie gewöhnliche Brüche, Online-Rechner. Multiplikationsoperation Schritt für Schritt erklärt
Die Zähler und Nenner der Brüche werden getrennt multipliziert
Vereinfachen Sie die Operation
Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:
- Ein vollständig gekürzter Bruch ist einer mit möglichst kleinem Zähler und Nenner, der nicht mehr gekürzt werden kann.
- * Durch die Verringerung der Werte der Zähler und Nenner von Brüchen werden nachfolgende Berechnungen einfacher durchzuführen.
Um einen Bruch vollständig zu kürzen: Dividiere Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- Um den ggT zu berechnen, zerlegen Sie Zähler und Nenner des Bruchs in Primfaktoren.
- Dann multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
Der Bruch: 45/11
45/11 ist bereits auf seine Grunddarstellung gekürzt.
Zähler und Nenner haben keine gemeinsamen Primfaktoren.
Die Primfaktorzerlegung von Zähler und Nenner:
45 = 32 × 5
11 ist eine Primzahl (es kann nicht in andere Primfaktoren zerlegt werden)
ggT (45; 11) = 1
Führen Sie die Rechenoperation mit den Brüchen durch
Multiplizieren Sie die Brüche:
Multipliziere die Zähler separat, also alle Zahlen über den Bruchstrichen.
Multipliziere die Nenner separat, also alle Zahlen unter dem Bruchstrich.
* Zerlegen Sie alle Zähler und alle Nenner, um den Endbruch leichter zu kürzen.
Externer Link » Zusammengesetzte Zahlen in Primfaktoren zerlegen, Online-Rechner
45/11 × 1/54 =
45 / (11 × 54) =
(32 × 5) / (11 × 2 × 33) =
(32 × 5) / (2 × 33 × 11)
Kürzen Sie den Endbruch auf seine Grunddarstellung:
Berechnen Sie den größten gemeinsamen Teiler, ggT,
des Zählers und des Nenners des Bruchs:
Um einen Bruch vollständig zu kürzen: Dividiere Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.
- Um den ggT zu berechnen, zerlegen Sie Zähler und Nenner des Bruchs in Primfaktoren.
- Dann multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
ggT (32 × 5; 2 × 33 × 11) = 32
Externer Link » Berechnen Sie den größten gemeinsamen Teiler, ggT, von zwei Zahlen, Online-Rechner
Interner Link » Kürzen Sie Brüche auf ihre Grunddarstellung (auf ihre einfachste äquivalente Form), Online-Rechner
Teilen Sie den Zähler und den Nenner durch ihren ggT:
(32 × 5) / (2 × 33 × 11) =
((32 × 5) : 32) / ((2 × 33 × 11) : 32) =
(32 : 32 × 5)/(2 × 33 : 32 × 11) =
(3(2 - 2) × 5)/(2 × 3(3 - 2) × 11) =
(30 × 5)/(2 × 31 × 11) =
(1 × 5)/(2 × 3 × 11) =
5/(2 × 3 × 11) =
5/66
Schreibe den Bruch um
Als Dezimalzahl:
Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:
5/66 =
5 : 66 ≈
0,075757575758 ≈
0,08
In Prozent:
- Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
- Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
- Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.
0,075757575758 =
0,075757575758 × 100/100 =
(0,075757575758 × 100)/100 =
7,575757575758/100 ≈
7,575757575758% ≈
7,58%
Externer Link » Integer- und Dezimalzahlen, Brüche, Verhältnisse und Proportionen in Prozent umrechnen und schreiben, Online-Rechner
Externer Link » [EN] Convert and write integer and decimal numbers, fractions and ratios as percentages, online calculator
Die endgültige Antwort:
auf drei Arten geschrieben
Als positiven echten Bruch:
(der Zähler < der Nenner)
45/11 × 1/54 = 5/66
Als Dezimalzahl:
45/11 × 1/54 ≈ 0,08
In Prozent:
45/11 × 1/54 ≈ 7,58%
Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.