- 86/41 × - 70/38 = ? Multiplizieren Sie gewöhnliche Brüche, Online-Rechner. Multiplikationsoperation Schritt für Schritt erklärt

Die Zähler und Nenner der Brüche werden getrennt multipliziert

Vereinfachen Sie die Operation

Schreiben Sie die äquivalente vereinfachte Operation neu:

Kombinieren Sie die Vorzeichen der Brüche zu einem einzigen, das vor dem Ausdruck steht. Wenn das Zeichen + ist, wird es normalerweise nicht geschrieben.


Das Vorzeichen einer Multiplikationsoperation:


+ 1 × + 1 = + 1

+ 1 × - 1 = - 1

- 1 × - 1 = + 1


- 86/41 × - 70/38 =


86/41 × 70/38

Vereinfachen Sie die Operation

Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:

  • Ein vollständig gekürzter Bruch ist einer mit möglichst kleinem Zähler und Nenner, der nicht mehr gekürzt werden kann.
  • * Durch die Verringerung der Werte der Zähler und Nenner von Brüchen werden nachfolgende Berechnungen einfacher durchzuführen.
  • Um einen Bruch vollständig zu kürzen: Dividiere Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.

  • Um den ggT zu berechnen, zerlegen Sie Zähler und Nenner des Bruchs in Primfaktoren.
  • Dann multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).

Der Bruch: 86/41

86/41 ist bereits auf seine Grunddarstellung gekürzt.

Zähler und Nenner haben keine gemeinsamen Primfaktoren.


Die Primfaktorzerlegung von Zähler und Nenner:

86 = 2 × 43

41 ist eine Primzahl (es kann nicht in andere Primfaktoren zerlegt werden)


ggT (86; 41) = 1


Der Bruch: 70/38

Die Primfaktorzerlegung von Zähler und Nenner:

70 = 2 × 5 × 7

38 = 2 × 19


ggT (70; 38) = 2


70/38 =

(70 : 2)/(38 : 2) =

35/19


Eine andere Methode zum Kürzen eines Bruchs:

70/38 =


(2 × 5 × 7)/(2 × 19) =


((2 × 5 × 7) : 2)/((2 × 19) : 2) =


(2 : 2 × 5 × 7)/(2 : 2 × 19) =


(1 × 5 × 7)/(1 × 19) =


35/19



Schreiben Sie die äquivalente vereinfachte Operation neu:

86/41 × 70/38 =


86/41 × 35/19

Führen Sie die Rechenoperation mit den Brüchen durch

Multiplizieren Sie die Brüche:

Multipliziere die Zähler separat, also alle Zahlen über den Bruchstrichen.

Multipliziere die Nenner separat, also alle Zahlen unter dem Bruchstrich.


* Zerlegen Sie alle Zähler und alle Nenner, um den Endbruch leichter zu kürzen.

Externer Link » Zusammengesetzte Zahlen in Primfaktoren zerlegen, Online-Rechner


86/41 × 35/19 =


(86 × 35) / (41 × 19) =


(2 × 43 × 5 × 7) / (41 × 19) =


(2 × 5 × 7 × 43) / (19 × 41)

Kürzen Sie den Endbruch auf seine Grunddarstellung:

Berechnen Sie den größten gemeinsamen Teiler, ggT,
des Zählers und des Nenners des Bruchs:

  • Um einen Bruch vollständig zu kürzen: Dividiere Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.

  • Um den ggT zu berechnen, zerlegen Sie Zähler und Nenner des Bruchs in Primfaktoren.
  • Dann multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
  • Aber der Zähler und der Nenner haben keine gemeinsamen Primfaktoren:


ggT (2 × 5 × 7 × 43; 19 × 41) = 1



Teilen Sie den Zähler und den Nenner durch ihren ggT:

Der Zähler und der Nenner des Bruchs sind teilerfremde Zahlen (es gibt keine gemeinsamen Primfaktoren, der ggT = 1). Der Endbruch lässt sich nicht mehr kürzen, er hat bereits den kleinstmöglichen Zähler und Nenner.


(2 × 5 × 7 × 43) / (19 × 41) =


3.010/779

Schreibe den Bruch um

Als gemischte Zahl (auch gemischter Bruch genannt):

  • Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
  • Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
  • Teilen Sie den Zähler durch den Nenner und notieren Sie den Quotienten und den Rest der Division, wie unten gezeigt:

3.010 : 779 = 3 und der Rest = 673 ⇒


3.010 = 3 × 779 + 673 ⇒


3.010/779 =


(3 × 779 + 673)/779 =


(3 × 779)/779 + 673/779 =


3 + 673/779 =


3 673/779

Als Dezimalzahl:

Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:


3 + 673/779 =


3 + 673 : 779 ≈


3,863928112965 ≈


3,86

In Prozent:

  • Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
  • Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
  • Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.

3,863928112965 =


3,863928112965 × 100/100 =


(3,863928112965 × 100)/100 =


386,392811296534/100 =


386,392811296534% ≈


386,39%


Die endgültige Antwort:
auf vier Arten geschrieben

Als positiven unechten Bruch:
(der Zähler >= der Nenner)
- 86/41 × - 70/38 = 3.010/779

Als gemischte Zahl (auch gemischter Bruch genannt):
- 86/41 × - 70/38 = 3 673/779

Als Dezimalzahl:
- 86/41 × - 70/38 ≈ 3,86

In Prozent:
- 86/41 × - 70/38 ≈ 386,39%

Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.

Andere ähnliche Operationen

Wie man die gewöhnlichen Brüche multipliziert:
98/48 × 78/40

Gewöhnliche Brüche multiplizieren, Online-Rechner:

Mehr zu gewöhnlichen Brüchen / Theorie: