- 62/91 × 71/99 = ? Multiplizieren Sie gewöhnliche Brüche, Online-Rechner. Multiplikationsoperation Schritt für Schritt erklärt

Die Zähler und Nenner der Brüche werden getrennt multipliziert

Vereinfachen Sie die Operation

Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:

  • Ein vollständig gekürzter Bruch ist einer mit möglichst kleinem Zähler und Nenner, der nicht mehr gekürzt werden kann.
  • * Durch die Verringerung der Werte der Zähler und Nenner von Brüchen werden nachfolgende Berechnungen einfacher durchzuführen.
  • Um einen Bruch vollständig zu kürzen: Dividiere Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.

  • Um den ggT zu berechnen, zerlegen Sie Zähler und Nenner des Bruchs in Primfaktoren.
  • Dann multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).

Der Bruch: 62/91

62/91 ist bereits auf seine Grunddarstellung gekürzt.

Zähler und Nenner haben keine gemeinsamen Primfaktoren.


Die Primfaktorzerlegung von Zähler und Nenner:

62 = 2 × 31

91 = 7 × 13


ggT (62; 91) = 1


Der Bruch: 71/99

71/99 ist bereits auf seine Grunddarstellung gekürzt.

Zähler und Nenner haben keine gemeinsamen Primfaktoren.


Die Primfaktorzerlegung von Zähler und Nenner:

71 ist eine Primzahl (es kann nicht in andere Primfaktoren zerlegt werden)

99 = 32 × 11


ggT (71; 99) = 1


Führen Sie die Rechenoperation mit den Brüchen durch

Multiplizieren Sie die Brüche:

Multipliziere die Zähler separat, also alle Zahlen über den Bruchstrichen.

Multipliziere die Nenner separat, also alle Zahlen unter dem Bruchstrich.


* Zerlegen Sie alle Zähler und alle Nenner, um den Endbruch leichter zu kürzen.

Externer Link » Zusammengesetzte Zahlen in Primfaktoren zerlegen, Online-Rechner


- 62/91 × 71/99 =


- (62 × 71) / (91 × 99) =


- (2 × 31 × 71) / (7 × 13 × 32 × 11) =


- (2 × 31 × 71) / (32 × 7 × 11 × 13)

Kürzen Sie den Endbruch auf seine Grunddarstellung:

Berechnen Sie den größten gemeinsamen Teiler, ggT,
des Zählers und des Nenners des Bruchs:

  • Um einen Bruch vollständig zu kürzen: Dividiere Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.

  • Um den ggT zu berechnen, zerlegen Sie Zähler und Nenner des Bruchs in Primfaktoren.
  • Dann multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
  • Aber der Zähler und der Nenner haben keine gemeinsamen Primfaktoren:


ggT (2 × 31 × 71; 32 × 7 × 11 × 13) = 1



Teilen Sie den Zähler und den Nenner durch ihren ggT:

Der Zähler und der Nenner des Bruchs sind teilerfremde Zahlen (es gibt keine gemeinsamen Primfaktoren, der ggT = 1). Der Endbruch lässt sich nicht mehr kürzen, er hat bereits den kleinstmöglichen Zähler und Nenner.


- (2 × 31 × 71) / (32 × 7 × 11 × 13) =


- 4.402/9.009

Schreibe den Bruch um

Als Dezimalzahl:

Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:


- 4.402/9.009 =


- 4.402 : 9.009 ≈


- 0,488622488622 ≈


- 0,49

In Prozent:

  • Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
  • Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
  • Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.

- 0,488622488622 =


- 0,488622488622 × 100/100 =


( - 0,488622488622 × 100)/100 =


- 48,862248862249/100


- 48,862248862249% ≈


- 48,86%



Die endgültige Antwort:
auf drei Arten geschrieben

Als negativen echten Bruch:
(der Zähler < der Nenner)
- 62/91 × 71/99 = - 4.402/9.009

Als Dezimalzahl:
- 62/91 × 71/99 ≈ - 0,49

In Prozent:
- 62/91 × 71/99 ≈ - 48,86%

Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.

Andere ähnliche Operationen

Wie man die gewöhnlichen Brüche multipliziert:
- 68/101 × - 78/111

Gewöhnliche Brüche multiplizieren, Online-Rechner:

Mehr zu gewöhnlichen Brüchen / Theorie: