- 19/11 × - 120/17 = ? Multiplizieren Sie gewöhnliche Brüche, Online-Rechner. Multiplikationsoperation Schritt für Schritt erklärt

Die Zähler und Nenner der Brüche werden getrennt multipliziert

Vereinfachen Sie die Operation

Schreiben Sie die äquivalente vereinfachte Operation neu:

Kombinieren Sie die Vorzeichen der Brüche zu einem einzigen, das vor dem Ausdruck steht. Wenn das Zeichen + ist, wird es normalerweise nicht geschrieben.


Das Vorzeichen einer Multiplikationsoperation:


+ 1 × + 1 = + 1

+ 1 × - 1 = - 1

- 1 × - 1 = + 1


- 19/11 × - 120/17 =


19/11 × 120/17

Vereinfachen Sie die Operation

Kürzen Sie die Brüche vollständig auf ihre Grunddarstellung:

  • Ein vollständig gekürzter Bruch ist einer mit möglichst kleinem Zähler und Nenner, der nicht mehr gekürzt werden kann.
  • * Durch die Verringerung der Werte der Zähler und Nenner von Brüchen werden nachfolgende Berechnungen einfacher durchzuführen.
  • Um einen Bruch vollständig zu kürzen: Dividiere Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.

  • Um den ggT zu berechnen, zerlegen Sie Zähler und Nenner des Bruchs in Primfaktoren.
  • Dann multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).

Der Bruch: 19/11

19/11 ist bereits auf seine Grunddarstellung gekürzt.

Zähler und Nenner haben keine gemeinsamen Primfaktoren.


Die Primfaktorzerlegung von Zähler und Nenner:

19 ist eine Primzahl (es kann nicht in andere Primfaktoren zerlegt werden)

11 ist eine Primzahl (es kann nicht in andere Primfaktoren zerlegt werden)


ggT (19; 11) = 1


Der Bruch: 120/17

120/17 ist bereits auf seine Grunddarstellung gekürzt.

Zähler und Nenner haben keine gemeinsamen Primfaktoren.


Die Primfaktorzerlegung von Zähler und Nenner:

120 = 23 × 3 × 5

17 ist eine Primzahl (es kann nicht in andere Primfaktoren zerlegt werden)


ggT (120; 17) = 1


Führen Sie die Rechenoperation mit den Brüchen durch

Multiplizieren Sie die Brüche:

Multipliziere die Zähler separat, also alle Zahlen über den Bruchstrichen.

Multipliziere die Nenner separat, also alle Zahlen unter dem Bruchstrich.


* Zerlegen Sie alle Zähler und alle Nenner, um den Endbruch leichter zu kürzen.

Externer Link » Zusammengesetzte Zahlen in Primfaktoren zerlegen, Online-Rechner


19/11 × 120/17 =


(19 × 120) / (11 × 17) =


(19 × 23 × 3 × 5) / (11 × 17) =


(23 × 3 × 5 × 19) / (11 × 17)

Kürzen Sie den Endbruch auf seine Grunddarstellung:

Berechnen Sie den größten gemeinsamen Teiler, ggT,
des Zählers und des Nenners des Bruchs:

  • Um einen Bruch vollständig zu kürzen: Dividiere Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.

  • Um den ggT zu berechnen, zerlegen Sie Zähler und Nenner des Bruchs in Primfaktoren.
  • Dann multiplizieren Sie alle gemeinsamen Primfaktoren: Wenn es sich wiederholende gemeinsame Primfaktoren gibt, nehmen wir sie nur einmal und nur diejenigen mit dem niedrigsten Exponenten (den niedrigsten Potenzen).
  • Aber der Zähler und der Nenner haben keine gemeinsamen Primfaktoren:


ggT (23 × 3 × 5 × 19; 11 × 17) = 1



Teilen Sie den Zähler und den Nenner durch ihren ggT:

Der Zähler und der Nenner des Bruchs sind teilerfremde Zahlen (es gibt keine gemeinsamen Primfaktoren, der ggT = 1). Der Endbruch lässt sich nicht mehr kürzen, er hat bereits den kleinstmöglichen Zähler und Nenner.


(23 × 3 × 5 × 19) / (11 × 17) =


2.280/187

Schreibe den Bruch um

Als gemischte Zahl (auch gemischter Bruch genannt):

  • Eine gemischte Zahl: eine ganze Zahl und ein echter Bruch, beide mit demselben Vorzeichen.
  • Ein echter Bruch: Der Wert des Zählers ist kleiner als der Wert des Nenners.
  • Teilen Sie den Zähler durch den Nenner und notieren Sie den Quotienten und den Rest der Division, wie unten gezeigt:

2.280 : 187 = 12 und der Rest = 36 ⇒


2.280 = 12 × 187 + 36 ⇒


2.280/187 =


(12 × 187 + 36)/187 =


(12 × 187)/187 + 36/187 =


12 + 36/187 =


12 36/187

Als Dezimalzahl:

Teilen Sie einfach den Zähler durch den Nenner ohne Rest, wie unten gezeigt:


12 + 36/187 =


12 + 36 : 187 ≈


12,192513368984 ≈


12,19

In Prozent:

  • Ein Prozentwert p% ist gleich dem Bruch: p/100, für eine beliebige Dezimalzahl p. Also müssen wir die Form der oben erhaltenen Zahl ändern, um einen Nenner von 100 zu haben.
  • Multiplizieren Sie dazu die Zahl mit dem Bruch 100/100.
  • Der Wert des Bruchs 100/100 = 1, also durch die Multiplikation der Zahl mit diesem Bruch ändert sich das Ergebnis nicht, nur die Form.

12,192513368984 =


12,192513368984 × 100/100 =


(12,192513368984 × 100)/100 =


1.219,251336898396/100


1.219,251336898396% ≈


1.219,25%


Die endgültige Antwort:
auf vier Arten geschrieben

Als positiven unechten Bruch:
(der Zähler >= der Nenner)
- 19/11 × - 120/17 = 2.280/187

Als gemischte Zahl (auch gemischter Bruch genannt):
- 19/11 × - 120/17 = 12 36/187

Als Dezimalzahl:
- 19/11 × - 120/17 ≈ 12,19

In Prozent:
- 19/11 × - 120/17 ≈ 1.219,25%

Wie werden die Zahlen auf unserer Website geschrieben: Punkt '.' wird als Tausendertrennzeichen verwendet; Komma ',' wird als Dezimaltrennzeichen verwendet; Zahlen werden auf maximal 12 Dezimalstellen gerundet (falls zutreffend). Der Satz der verwendeten Symbole auf unserer Website: / der Bruchstrich; : dividieren; × multiplizieren; + plus (addieren); - minus (subtrahieren); = gleich; ≈ etwa gleich.

Andere ähnliche Operationen

Wie man die gewöhnlichen Brüche multipliziert:
26/15 × - 126/20

Gewöhnliche Brüche multiplizieren, Online-Rechner:

Mehr zu gewöhnlichen Brüchen / Theorie: